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Abstract—Emergence of fault-tolerant quantum computers
(FTQC) brings about promise of harnessing power of quantum
computing at larger scale. At the same time, as quantum
computers are expected to process more sensitive information,
there is a need to understand the security issues in fault-tolerant
quantum computers, and develop defenses for attacks that may
compromise confidentiality or integrity of the data processed by
FTQC. While noisy intermediate-scale quantum (NISQ) com-
puters have already been studied from the security perspective,
understanding security issues with FTQC is still an open research
question. To address the missing research gap, this work presents
the first exploration of possible security vulnerabilities of FTQC.
The work presents analysis of possible threat models and outlines
potential vulnerabilities of FTQC. Understanding the landscape
of the threats can help lead to development of safer FTQC design
at both software and hardware levels.

Index Terms—Fault-Tolerant Quantum Computing, FTQC,
Security Vulnerabilities

I. INTRODUCTION

Fault-tolerant quantum computing (FTQC) is an approach
to quantum computation that ensures reliable operation even
in the presence of errors caused by noise, decoherence, and
imperfections in quantum hardware. While some quantum al-
gorithms may show benefits on the current Noisy Intermediate
Scale Quantum (NISQ) computers, many quantum computing
algorithms, such as Shor’s [19] or Grover’s [11] require use of
error-corrected quantum computers to produce efficient solu-
tions to problems at large scale. With the ability of FTQC to
execute powerful quantum algorithms such as Shor’s, Grover’s,
or others, there is a need to understand the security issues in
fault-tolerant quantum computers, and develop defenses for
attacks that may compromise confidentiality or integrity of
the data processed by FTQC.

In the realm of NISQ computers, researchers have already
demonstrated a variety of potential security attacks. For exam-
ple, by abusing crosstalk, researchers have shown it may be
possible to maliciously flip qubits [16] when two quantum cir-
cuits are sharing the same quantum computer. Or, researchers
have also shown that basic quantum computing gates, such as
the reset gate, leak information when the gate operation is not
perfect [12]. These and other prior work mainly abuse NISQ
computers where there is no error correction and the qubits
are vulnerable to various forms of disturbance.

With the advent of fault-tolerant quantum computing, many
of the security issues in NISQ may be avoided. For example,

basic attacks that introduce noise or errors into computation
may be protected through the error correction. Yet, as this work
proposes, there are new, unexplored vulnerabilities in fault-
tolerant quantum computing. In general, this work presents ex-
ploration of possible vulnerabilities in fault-tolerant quantum
computing to highlight the fact that although error correction
provides numerous benefits, it does not automatically protect
against all security threats, and new security defenses will
need to be developed and deployed on top of error correction
in FTQC.

The potential vulnerabilities are compounded by the fact
that FTQC (and NISQ computers) are expensive and only
practically available as remote quantum servers though var-
ious cloud-based services. With remote access, users have
no physical control of the machines or the cloud operators
who manage the remote quantum computers. This presents
the challenge of possible security attacks due to untrusted or
malicious cloud providers or other untrusted or malicious users
who are running their quantum programs on the shared cloud
infrastructure (through spatial or temporal sharing).

Already today, quantum computers are easily accessible
through cloud-based services such as Amazon Braket [1],
IBM Quantum [4], or Microsoft Azure [8]. These services are
open to anybody through pay-as-you-go cloud services. Many
companies and startups that do not have their own quantum
computers already can use these cloud-based quantum com-
puters to run their, often proprietary, quantum circuits. As a
recent example, JPMorgan Chase does not own a quantum
computer, but leverages cloud-based Quantinuum H-series to
develop algorithms for solving linear systems on quantum
hardware [20]. With more powerful, FTQC the utilization of
quantum computers will continue to raise, and the importance
of securing quantum circuits and programs that execute on the
quantum computers will continue to increase.

Given the emergence of proof-of-concept attacks and need
to secure quantum computing, especially cloud-based quantum
computing, a number of researchers have proposed some
defenses. The defenses have been exclusively in the realm
of NISQ computers. Researchers have developed a quantum
compute antivirus [7], [6], while others have proposed use of
obfuscation to protect quantum circuits executing on honest-
but-curious cloud-based quantum computers [18]. Whether
these defenses can be adapted to FTQC, or what FTQC
specific defenses are needed, is an open research question. This



work focuses on exploration of vulnerabilities of fault-tolerant
quantum computing. The resulting insights can directly drive
future work on securing and improving FTQC.

II. BACKGROUND

This section provides very brief background on FTQC and
classical control infrastructure in FTQC.

A. Fault-Tolerant Quantum Computing

FTQC devices rely upon quantum error correction (QEC)
to improve the noise resilience of computation. There exist
many QEC codes; the surface code is among the best known
because it can be implemented with 2D planar connectiv-
ity. However, these codes also require specific schemes to
effect quantum logic. For example, the surface code can
only natively implement the Clifford gates, which are not
universal. To perform the ‘T’ gate needed for universality,
specific magic state infrastructure is needed. Furthermore, two-
qubit interactions on surface codes require ‘lattice surgery,’
deforming the code in a predictable pattern. The Clifford+T
logical instruction set has encouraged the creation of new
compilers and design of both QEC codes and compilers is
an active research area. Compiling to the underlying platform
requires mapping and routing logical qubits, scheduling their
interactions, and planning magic state production.

B. Classical Control Infrastructure

The classical control infrastructure for an FTQC system
must accomplish a range of tasks, from controlling physical
qubits to decoding error syndromes and orchestrating higher
level instructions [21]. These tasks require significant classical
infrastructure that can be many times the size of the quantum
chip and its refrigerating envelope when considering supercon-
ducting qubits. The control infrastructure can be abstracted
as a ‘quantum control processor’ plus associated software
and algorithms.

In particular, maintaining a logical qubit via syndrome
decoding is a computationally demanding task. Decoding is
known to be hard theoretically, with complexity class ei-
ther NP complete or #P depending on the precise decoding
problem [9]. Furthermore, decoding must be performed at
the cycle rate of physical hardware; for fast platforms (e.g.
superconducting qubits), this means that decoders must operate
within microsecond [13] latencies.

Proposed algorithms and architectures for QEC decoders
have explored a variety of ideas to improve performance.
To improve algorithms complexity, approximate decoding al-
gorithms can be used; some, for example, solve easy cases
and offload hard cases [5], [15]. To reduce latency, dedicated
decoding chips are placed either near or in the fridge. For
example, CryoCMOS chips can be placed within the fridge [3]
and FPGAs can be placed outside the fridge. However, these
solutions all have drawbacks: approximate algorithms are
still demanding computationally and specialized chips are
expensive to fabricate, especially on novel platforms like
CryoCMOS.

C. Compiling Circuits to FTQC Devices

Compilation of quantum algorithms is a nascent and active
area of research. Compilation involves multiple levels of ab-
straction, requiring program transformation from the algorith-
mic, logical, and physical levels. For example, programs may
first be described mathematically, then translated into logical
instructions, then optimized for physical qubit instructions.

There are many potential compiler optimizations which may
be employed. For example, compiling multi-controlled NOT
gates can be done with clean ancillas, dirty ancillas [22], or
in-place [2]. Each of these compilation schemes would affect
the physical operations actually performed. Furthermore, these
implementations must be mapped and routed on real devices,
incurring additional overheads and room for optimization.

D. Security of FTQC, Classical Control, and FTQC Compilers

This far, security aspects of FTQC, classical control, and
compilers have not been considered. As many aspects of
FTQC are being actively developed, now is the time to
incorporate security into the design. To help give guidance,
this paper presents taxonomy of threat models in the following
section, and classification of vulnerabilities of FTQC in the
subsequent section.

III. TAXONOMY OF THREAT MODELS

We first provide a taxonomy of threat models. Different
users may have different threats they are worried about,
what one user considers a vulnerability, another may not be
concerned about. Thus, it is important to have a taxonomy of
threat models, which then is used to evaluate what vulnerabil-
ities are a concern under each particular threat model.

Figure 1 shows a taxonomy of threat models for fault-
tolerant quantum computing. When deciding on a threat
model, a user (or cloud provider or manufacturer) should
decide who and what can be trusted, what are considered
attack vectors, and what are the considered attack realization.
A specific threat model is effectively a combination of answers
to each of these questions.

For example, a cloud provider may be worried about
untrusted users and using malicious software to perform
remote attacks. Or, a cloud user may be worried about an
untrusted cloud provider performing sensing on operation of
the quantum control processor through a physical attack. Or
a cloud provider may be worried about an untrusted hardware
manufacturer who has inserted a hardware Trojan through
modification of qubit design.

In the Figure 1 colored and dashed arrows highlight var-
ious attack vectors when a particular component is assumed
untrusted. For example, a quantum program could be directly
malicious (label “Malicious Software” in the taxonomy figure)
or an otherwise honest user could download a third-party
library that contains malicious code (label “Malicious 3rd

Party Library” in the taxonomy figure). Further, a quantum
compiler may be directly malicious (label “Malicious Soft-
ware” in the taxonomy figure), or the compiler developer can
download a third-party library that contains malicious code
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Fig. 1. Taxonomy of threat models for fault-tolerant quantum computing.

(label “Malicious 3rd Party Library” in the taxonomy figure).
On the hardware side, an untrusted cloud provider could try
to modify the qubits and hardware they control (label “Qubit
Modification” in the taxonomy figure) or given their physical
access to the devices they could try to sense operation of
the qubits ((label “Sensing Qubit and Gate Operations” in the
taxonomy figure).

A. Choice of Threat Model(s)

The choice of threat model is a subjective choice. Some
threats may be more plausible, e.g. user downloading a mali-
cious third-party library. Other threats may be less plausible,
e.g. a cloud provider opening up a dilution refrigerator and
physically modifying the qubit hardware. Yet, on the other
hand, a malicious hardware manufacturer could easily modify
the hardware. The threat model taxonomy cannot answer the
question about which threat models a user (or cloud provider
or manufacturer) should consider, but it is a means of thinking
about what could be trusted (or untrusted) and what are
possible attack vectors and attack realizations.

IV. CLASSIFICATION OF VULNERABILITIES OF DIFFERENT
COMPONENTS

While noisy intermediate-scale quantum (NISQ) computers
have already been studied from the security perspective, under-
standing security issues with FTQC is still an open research

question. To address the missing research gap, this section
presents the first exploration of possible security vulnerabil-
ities of FTQC by developing a taxonomy of vulnerabilities
of FTQC.

Possible vulnerabilities are presented for each component
of a FTQC system. Whether the possible vulnerabilities are
a real security concern, depends on whether the component
is considered untrusted by the user (or cloud provider or
manufacturer). This in turn depends on the threat model that
is being considered. Section III discussed the possible threat
models through use of our taxonomy.

Figure 2 shows various vulnerabilities that could affect
FTQC systems. We focus on five components, the quantum
programs, FTQC compiler, error correction code definition,
quantum control processor, and the quantum-classical inter-
face. We separate the error correction code definition to
highlight the fact that otherwise correct and trusted control
processor could be configured to use wrong or incorrect or
weak error correction.

Considering quantum programs, with FTQC the possibility
to cause crosstalk attacks may be limited, as the users ex-
ecute atop logical qubits. However, if a user is able to get
access to control of physical qubits (through the ability to
disable error correction or specify custom error correction
algorithm that allows them to control physical qubits), then
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Fig. 2. Classification of vulnerabilities of fault-tolerant quantum computing.

users could generate attacks by having malicious control pules.
Considering the error correction code definition, if the provider
allows for custom error correction, or attackers find ways
to manipulate the error correction, then they can undermine
the system. Further, attackers could find flaws in the error
correction algorithms or implementations that then facilitate
attacks. Considering the FTQC compiler, it could change
the error correction, modify code, or even steal user’s code.
Users will be worried about code modification or stealing
(if compiler is hosted in the cloud), while cloud providers
will be worried about compiler properly implementing error
correction (if compiler is hosted by users locally before they
submit compile circuits to the cloud). Considering quantum
control processor, it is vulnerable to various side and fault
injection attacks. Targeting classical operations, attackers can
steal digital or analog data about qubit or gate operations being
executed. Quantum classical interface is the direct connection
between the control processor and the qubits. Transmission
lines could be monitored to learn qubit access times and
patterns, or faults could be injected into the transmission lines.

V. EXAMPLE ATTACKS

In this section, we present two preliminary results demon-
strating potential weaknesses in FTQC concerning program
identification. We focus on possible side channel leaks in
the quantum control processor. We simulate attacker’s access
to information about which qubits are interacting with each
other as different quantum circuits execute, i.e. we consider
the threat model of an untrusted cloud provider collecting
information about quantum gates and the qubits they involved.

We consider only two-qubit interactions among logical qubits
as a quantum program executes.

A. Clustering Connectivity Graphs

As the most basic approach, we generate connectivity
graphs, where each node represents a qubit, while the edge
weight represents how often each pair of qubits has interacted
during the execution of the circuit.

We generate graphs that represent a subset of QASM-
Bench [10] benchmarks. To identify whether the graphs have
structure, we take two steps. First, we compute the similarity
among the graphs, then, we cluster the provided graphs using
graph kernels. Graph kernels [14] are used to compare the
similarity of different graphs. A graph kernel g is defined over
the space of graphs G as follows:

g : G × G 7→ R (1)

For example, for graphs G1, G2, g(G1, G2) represents the
similarity of graphs G1, G2 under some metric g. We use
the Python library Grakel [17] and ShortestPath and Ran-
domWalk kernels.

Figure 3 shows the clustered heatmaps of the large size
transpiled QASMBench [10] benchmarks with RandomWalk
and ShortestPath graph kernels. More similar graphs are shown
in light color, and less similar graphs are shown in dark color.
On the diagonal we can see that by definition, each graph
is similar to itself and thus the diagonal is light colored.
As we can see, different benchmarks are similar to each
other, and groups of benchmarks get clustered together. Future
understanding of the reasons behind why the benchmarks are
similar and how that relates to the clusters can help understand
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Fig. 3. Clustered heatmaps of large size transpiled QASMBench [10] benchmarks with RandomWalk and ShortestPath graph kernels.

if there are possible information leaks from the connectivity
graphs that an attacker may gather. For example, if a new
algorithm is being executed, its similarity to a known circuit
could leak information about that new algorithm.

B. Qubit Access Pattern

As a second approach, we consider qubit access pattern.
We generate qubit access patterns by analyzing which qubits
would be active, i.e. interacting with another qubit, at each
time-step of circuit execution.

We analyze four quantum subroutines: quantum adder,
quantum product, QFT, and Trotter circuits. We observe that
access patterns of qubits can also reveal some insights about
program structure. In Figure 4, we show two-qubit (inter-
acting) gates in time. Note that different subroutines have
different access patterns; this may serve as a unique signature
for different subroutines. In particular, access patterns will
also be harder to obfuscate, as they reflect fundamental data
interactions that must occur for the program to succeed.

VI. CONCLUSION

In this work, we analyzed the possible threat models and
potential vulnerabilities of the fault-tolerant quantum com-
puters. We presented a taxonomy of different threat models
and classification of vulnerabilities in FTQC. In addition,
two example attack scenarios were analyzed from among the
possible threat models and vulnerabilities. The main focus was
to identify the structure of the executed quantum program.
Based on the taxonomy of threat models and the classification
of vulnerabilities, future work can study each threat model
and each vulnerability to build a comprehensive understanding
of threats to FTQC, and eventually propose software or
hardware defenses.
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