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Abstract—Quantum computing (QC) has the potential to rev-
olutionize fields like machine learning, security, and healthcare.
Quantum machine learning (QML) has emerged as a promising
area, enhancing learning algorithms using quantum computers.
However, QML models are lucrative targets due to their high
training costs and extensive training times. The scarcity of
quantum resources and long wait times further exacerbate the
challenge. Additionally, QML providers may rely on third-party
quantum clouds for hosting models, exposing them and their
training data to potential threats. As QML-as-a-Service (QM-
LaaS) becomes more prevalent, reliance on third-party quantum
clouds poses a significant security risk. This work demonstrates
that adversaries in quantum cloud environments can exploit
white-box access to QML models to infer the user’s encoding
scheme by analyzing circuit transpilation artifacts. The extracted
data can be reused for training clone models or sold for profit. We
validate the proposed attack through simulations, achieving high
accuracy in distinguishing between encoding schemes. We report
that ≈95% of the time, the encoding can be predicted correctly.
To mitigate this threat, we propose a transient obfuscation layer
that masks encoding fingerprints using randomized rotations
and entanglement, reducing adversarial detection to near-random
chance ≈42%, with a depth overhead of ≈8.5% for a 5-layer
QNN design.

Index Terms—QML Security, Untrusted Quantum Cloud,
Encoding, Transpilation artifacts

I. INTRODUCTION

Quantum computing (QC) is gaining attention for its poten-
tial to revolutionize problem-solving across various fields. By
utilizing quantum properties like superposition, entanglement,
and interference, QC offers significant speedups for certain
tasks, surpassing classical computing capabilities. With poten-
tial applications in machine learning [1], [2], security [3], drug
discovery [4], optimization [5], [6], finance [7], and healthcare
[8], quantum computing is becoming increasingly important in
both academia and industry.

Noisy Intermediate-Scale Quantum (NISQ) devices, char-
acterized by a limited number of qubits and susceptibility to
noise, face challenges such as restricted qubit connectivity,
gate errors, and decoherence, leading to inaccuracies in com-
putation. These limitations hinder the direct implementation of
large-scale quantum algorithms, prompting the exploration of
hybrid approaches like the Quantum Approximate Optimiza-
tion Algorithm (QAOA) and Variational Quantum Eigensolver
(VQE), which combine classical optimization with quantum
subroutines to mitigate noise effects. In this emergent field,
quantum machine learning (QML) has gained considerable
attention, aiming to improve learning algorithms by leveraging
quantum capabilities. Various QML models have been ex-
plored, including quantum support vector machines (QSVMs)

[9], quantum convolutional neural networks (QCNNs) [1],
and quantum generative adversarial networks (QGANs) [10].
Among these, quantum neural networks (QNNs) [11] are
notable for replicating the structure and function of classical
neural networks within a quantum framework. QNNs utilize
parameterized quantum circuits (PQCs) composed of train-
able single-qubit and two-qubit gates, with their parameters
optimized using classical optimizers. By encoding data into
quantum states through methods such as amplitude, angle, or
basis encoding, QNNs leverage superposition and entangle-
ment to process information in ways that classical systems
cannot replicate. However, optimizing PQCs poses significant
challenges due to high computational complexity, resource
constraints, and lengthy execution times.

Motivation: The practical realization of this transformative
potential of quantum neural networks (QNNs) largely depends
on cloud-based quantum services, where users submit circuits
to remote hardware—a dependency that introduces critical,
yet understudied, security vulnerabilities. Leading platforms
such as IBM [12], Google [13], and AWS Braket [14] pro-
vide scalable and accessible quantum computing services;
however, they face challenges like job submission latency,
queue congestion, and high operational costs. The reliance
on cloud infrastructure is driven by the exorbitant costs and
specialized requirements of quantum hardware. Training QML
models incurs significant expenses, with leading platforms
like IBM and IonQ charging up to $1.6 per second for
superconducting qubits and $0.01 per shot for trapped-ion sys-
tems—orders of magnitude costlier than classical alternatives.
Compounding this, the iterative nature of hybrid quantum-
classical algorithms leads to prolonged training times, often
spanning months due to scarce quantum resources and queue
congestion on cloud platforms. These factors render trained
QML models exceptionally valuable intellectual property (IP),
incentivizing adversarial attacks aimed at stealing circuit archi-
tectures, optimized parameters, or embedded training data. As
the quantum ecosystem expands, third-party providers offering
“Quantum Machine Learning as a Service” (QMLaaS) [15]
further exacerbate these risks. Services like Orquestra [16] and
tKet [17] facilitate multi-hardware integration, while Baidu’s
“Liang Xi” [18] offers flexible quantum access via mobile,
desktop, and cloud interfaces. While trusted hardware remains
the preferred choice for applications with high economic or
social stakes, hybrid quantum-classical algorithms often incur
significant expenses and delays due to the numerous iterations
required. Although governments and large enterprises may
possess dedicated quantum resources, they are costly and ge-



Fig. 1. Proposed attack model where the adversary, posing as a reliable quantum cloud service provider, uses the white box access to the QNN submitted to
a quantum cloud to identify the type of encoding.

ographically constrained. This growing reliance on third-party
compilers, hardware ecosystems, and cloud services introduces
pressing concerns regarding the reliability and security of
quantum computations.

A QNN comprises of a data encoding circuit that transforms
data into quantum states, a parameterized quantum circuit
(PQC) with tunable parameters, and measurement operations
for extracting information. Encoding methods, such as basis,
amplitude, or angle encoding, are crucial as they determine
how input data is represented in the quantum system. These
methods imprint distinct structural signatures in transpiled
circuits, such as characteristic gate sequences, rotation an-
gle distributions, and entanglement patterns. Malicious cloud
providers with white-box access, acting as adversaries, can
exploit these artifacts to reverse-engineer proprietary encoding
schemes, enabling them to infer sensitive details about the
input data, model architecture, and even training objectives.
Such breaches compromise not only intellectual property but
also data privacy, as encoding methods often embed domain-
specific preprocessing critical to a model’s functionality. Sev-
eral studies have addressed protecting quantum circuits from
untrusted clouds [19], [20], however they focus on protect-
ing computation outputs or mitigating hardware-level attacks,
overlooking the risks posed by encoding side channels. This
gap leaves users vulnerable to adversaries who can sim-
ply inspect transpiled circuits and steal proprietary encoding
techniques or reconstruct training data. This paper to our
knowledge is the very first attempt which aims to understand
and mitigate this security vulnerability.

Contributions: In this work, we: (a) propose a novel frame-
work for classifying popular quantum encoding schemes (i.e.,
angle, amplitude, and basis encodings) through transpilation
patterns, (b) demonstrate the effectiveness of our approach
using a comprehensive dataset of circuits generated with varied
encoding types and parameterized quantum circuits (PQCs),
(c) introduce a multi-level feature extraction pipeline that cap-
tures discriminative patterns from transpiled circuits, including
structural signatures, rotation analysis, and entanglement met-
rics, (d) validate our methods through simulations, achieving
high accuracy in distinguishing between encoding schemes,
(e) propose a lightweight, transient obfuscation layer that
masks encoding fingerprints using randomized rotations and

entanglement, reducing adversarial detection to near-random
chance.

Paper organization: Section II provides background infor-
mation. Section III outlines the threat model and section IV
presents the proposed defense. Section V covers results and
Section VI concludes the paper.

II. BACKGROUND

A. Quantum Neural Network (QNN)

A QNN consists of three main components (Fig. 1): (i) a
data encoding circuit that maps classical data into quantum
states, (ii) a parameterized quantum circuit (PQC) with tunable
parameters, and (iii) measurement operations to extract useful
information from the quantum system. Due to the limited
number of qubits in current quantum devices, classical pre-
processing techniques such as Principal Component Analysis
(PCA) are often employed to reduce the dimensionality of
input data. The reduced data is then encoded into quantum
states using methods like basis encoding, amplitude encoding,
or angle encoding. The PQC is the core trainable component
of a QNN. It consists of a sequence of quantum gates with
adjustable parameters designed to recognize patterns in data
and solve specific problems. Finally, measurement operations
collapse the qubit states to either 0 or 1. The expectation
value of Pauli-Z is used to determine the average state of
the qubits. These measured values are typically fed into a
classical neuron layer, with the number of neurons equal to
the number of classes in the dataset. This layer performs
the final classification task. A classical optimizer optimizes
the parameters iteratively to achieve the desired input-output
relationship.

B. Quantum Cloud Services

Quantum computers require extensive and expensive infras-
tructure, such as cryogenic coolers and superconducting wires,
making direct access challenging. Quantum cloud services
like IBM [12], Google [13], and AWS Braket [14] provide
remote access, simplifying system management. Users send
their quantum circuits to these services, specifying target
hardware and metadata.



C. Data Encoding

Data encoding is a critical step in quantum machine learning
(QML) and quantum neural networks (QNNs), as it trans-
forms classical data into quantum states, enabling quantum
algorithms to process information efficiently. The choice of
encoding method significantly impacts the performance, ex-
pressivity, and scalability of quantum models. Some widely
used encoding schemes are:

1) Basis Encoding: Maps classical data directly to the
computational basis states of qubits. In this approach, each
classical data point is represented as a binary string, where
each bit in the string corresponds to a qubit state. For example,
consider a classical data vector [1, 0, 1], which can be encoded
into the quantum state |101⟩. This encoding method is par-
ticularly advantageous for representing discrete or categorical
data, as it provides a straightforward and efficient mapping
from classical to quantum representation. However, a major
drawback is that the number of qubits required grows linearly
with the size of the dataset, which poses scalability challenges
when dealing with high-dimensional data.

2) Angle Encoding: Embeds classical data into the rota-
tional angles of qubits on the Bloch sphere. In this approach, a
classical feature xi is represented as a rotation along a specific
axis using quantum gates such as Rx(xi), Ry(xi), or Rz(xi).
This method allows for the encoding of continuous data into
quantum states efficiently. Additionally, dense angle encoding
can encode multiple features per qubit by incorporating ad-
ditional phase gates, enabling more compact representations.
A key advantage of angle encoding is its efficiency in terms
of gate depth and the reduced number of qubits required
compared to basis encoding, making it particularly suitable
for continuous-valued data.

3) Amplitude Encoding: Utilizes the amplitudes of quan-
tum states to represent normalized classical data. Given a
classical vector x = [x1, x2, . . . ], it is transformed into the
quantum state |ψ⟩ =

∑
i xi |i⟩, where each amplitude xi

corresponds to a feature in the data. This encoding scheme
is highly space-efficient, as it can represent 2n features using
only n qubits, making it particularly advantageous for large
datasets. Amplitude encoding is primarily limited by its high
circuit complexity, requiring intricate quantum operations for
precise state preparation.

4) Hybrid and Advanced Encoding Techniques: Recent
research has explored hybrid approaches that combine angle
and amplitude encoding to leverage their respective strengths.
These hybrid encoding methods aim to enhance information
representation while addressing the limitations inherent to
individual techniques.

D. Related works

The security of machine learning systems has been exten-
sively studied in classical computing, with attacks ranging
from side-channel exploits on hardware accelerators to black-
box model extraction via adversarial queries [21] [22]. Recent
work has extended reverse engineering (RE) to quantum
circuits, using lookup tables (LUTs) to map transpiled gate

sequences to original QML architectures [23]. By analyz-
ing rotation gate ordering and entanglement patterns, ad-
versaries can infer circuit parameters, exposing proprietary
model designs. Building on this, [24] demonstrates how ad-
versaries can extract state preparation circuits and training
labels from QML models, directly stealing training data by
reverse-engineering the encoding process. This underscores
the criticality of encoding schemes as attack surfaces, as they
bridge raw data to quantum computation. Quantum homo-
morphic encryption (QHE) [25], while theoretically viable,
imposes prohibitive overheads incompatible with near-term
devices. Recent quantum-specific defenses address model theft
through strategies like distributed execution (QuMoS [26]) and
output obfuscation (STIQ [27]), but these focus on protecting
trained parameters rather than preventing encoding detection.
Furthermore, while strategies like circuit partitioning [19], [20]
aim to distribute trust across providers, they fail to protect
QNNs and related IPs because any untrusted provider with
access to transpiled circuits can recover encoding schemes.
Our work diverges by addressing encoding-specific transpi-
lation artifacts. Unlike [24], which focuses on training data
extraction, we demonstrate that adversaries can preemptively
identify encoding methods to streamline subsequent attacks.

III. THREAT MODEL

A. Basic Idea

The assets in QNNs include proprietary algorithms, training
data, and the resulting trained models. Identifying the encod-
ing scheme used in a QNN can facilitate the extraction of
embedded features, posing a security risk. While quantum en-
coding methods such as angle, amplitude, and basis encoding
provide distinct data representations, their implementation on
near-term hardware introduces artifacts due to transpilation.
We propose that these artifacts inherently imprint encoding-
specific signatures during transpilation, which can be exploited
by a malicious quantum service provider. In the proposed
attack model, the adversary operates as an untrusted cloud
provider while posing as a legitimate and reliable hardware
vendor. With access to transpiled QNNs submitted for training,
the adversary can analyze the state preparation (encoding)
circuits (Fig. 1). The primary objective is to extract critical
details about the victim’s encoding scheme and embedded
features, which can then be monetized.

B. Adversary Capabilities and Assumption

We assume that: (a) The adversary has access to the
transpiled circuit submitted by users and the results produced
by the quantum computer. This is justified because the cloud
provider, by design, has access to both the QNN and the
measurement results; (b) The victim employs one of the three
widely used encoding schemes: angle encoding, amplitude
encoding, or basis encoding, and encodes only one feature
per qubit. This assumption is reasonable as these encodings
are the foundation of many near-term QML algorithms and are
widely adopted due to their compatibility with current NISQ
devices. By restricting our scope to these encoding methods,



Fig. 2. Training, validation accuracy and loss for classifying the encoding
scheme in a 3-qubit circuit with 3 encoded features.

we establish a realistic and practical baseline for analyzing
encoding detection under existing hardware constraints.

C. Attack Process

This section presents a hybrid quantum-classical approach
for encoding classification, combining quantum circuit tran-
spilation patterns with classical feature engineering. The
methodology focuses on identifying quantum circuit signatures
through systematic analysis of gate-level implementations
across different encoding schemes.

1) Data Set Generation: The dataset is constructed using
PQCs with varied encoding schemes and rotational configura-
tions:

Encoding Layer Construction: We generate distinct quan-
tum state representations using three fundamental state prepa-
rations: a) Pauli Rotations: maps classical features xi to qubit
rotations Rj(xi), where j ∈ X,Y, Z,with xi ∼ U(0, 2π). b)
Amplitude Encoding: represents 2n features in n-qubit state
using haar-random 2n-dimensional statevector initialization
∥ψ⟩ = 1

∥v⃗∥
∑

k vk|k⟩. c) Basis Encoding: direct bit-to-qubit
mapping via X gates.

PQC Augmentation: PQCs with varying configurations
(e.g., entanglement patterns and gate types) are added to
enhance the diversity of the dataset. We used different PQCs
with different starting gates (P):

P = {rx,ry,rz,cx,x,sx,crx,cry,crz}

Hardware Simulation: Quantum circuits are transpiled
using a noisy fake back-end (GenericBackendV2), ensuring
features reflect hardware-aware implementations.

Labeling: Each sample is labeled based on its encoding
type to facilitate supervised learning.

Example: For a sample 3-qubit system with single-feature
encoding, we generate a comprehensive dataset of 18,000
circuits.

2) Feature Extraction and Engineering: Feature extrac-
tion focuses on converting the characteristics of quantum
circuits into a numerical feature space suitable for classical
machine learning. Our approach starts with an intuitive anal-
ysis of transpiled circuits across various encoding schemes to
identify recognizable patterns. Insights from this exploratory

analysis guided the creation of a systematic feature extraction
process, designed to capture key quantum circuit patterns
crucial for differentiating between various encoding types.

Features = 27 + 2× Qubits (1)

The feature engineering pipeline refines the process by
identifying discriminative circuit features (Equation 1) through
three levels of analysis:

Structural Signatures: Provide essential insights into the
encoding mechanisms used within quantum circuits. Key
markers include: a) Basis encoding markers: Ratios of X and
SX gates, along with binary pre-CNOT patterns; b) Amplitude
encoding indicators: Diversity in rotation gate parameters
indicating high variability in amplitude encoding; c) Transpi-
lation artifacts: Frequency of RZ-SX sequences and statistical
distributions of rotation angles.

Rotation Analysis: Rotation-based features capture the
statistical properties of gate parameters, including: a) Mean,
standard deviation, and entropy of rotation angles for each
gate type; b) Correlation of consecutive gate parameters across
the circuit; c) Modular distributions of rotation angles (θ
mod 2π) to identify characteristic transformations.

Entanglement Signatures: Entanglement metrics charac-
terize multi-qubit interactions, which are crucial for under-
standing circuit complexity.

The extracted feature space captures both global circuit
properties and local qubit-wise patterns.

3) Training Model: The classification model integrates
quantum-aware preprocessing with classical deep learning to
effectively differentiate encoding schemes.

Preprocessing Pipeline: The preprocessing pipeline en-
sures standardized input representation and maintains encod-
ing balance. A stratified data splitting approach is employed,
using a 60-20-20 split to preserve encoding ratios across
training, validation, and test sets. Additionally, Z-score nor-
malization is applied to standardize the features to have zero
mean and unit variance.

Network Architecture: The neural network employs a
multilayer perceptron (MLP) classifier designed to capture
both local and global circuit characteristics. The input layer
consists of a number of neurons equal to the total extracted
features, ensuring a direct mapping from the feature space to
the network. The first hidden layer, comprising 25 neurons,
while the second hidden layer, with 10 neurons. Finally, the
output layer applies a softmax activation function to classify
inputs into five encoding types. The network is trained using
the ReLU activation function, the Adam optimizer, and a
maximum of 100 training iterations.

IV. PROPOSED DEFENSE

The adversarial detection of quantum encoding scheme
relies on identifying predictable patterns in the transpiled
circuit structure. To counter this, we introduce a temporary
scrambling mechanism that strategically alters the transpiled
circuit’s transient properties while preserving its final out-
put. Our proposed defense mechanism acts as a transient



TABLE I
CLASSIFICATION PERFORMANCE METRICS (3-QUBIT QNN)

Encoding Type Precision Recall F1-Score Support
Amplitude 1.00 1.00 1.00 900
Basis 0.93 0.81 0.87 900

Rx 0.92 0.96 0.94 900
Angle Ry 0.93 0.97 0.95 900

Rz 0.95 0.98 0.96 900
Accuracy - - 0.94 4500
Macro Avg 0.94 0.94 0.94 4500
Weighted Avg 0.94 0.94 0.94 4500

Fig. 3. Test accuracy for circuits with varying qubit counts, where each qubit
encodes a single feature.

“cloaking” layer strategically positioned between the quantum
encoding circuit and the parameterized quantum circuit (PQC).
This layer temporarily obfuscates the encoded state’s structure,
ensuring adversaries cannot identify the encoding methods.
The defense operates in three stages:

1) Obfuscation Phase: Immediately after the encoding
circuit, we apply a sequence of randomized quantum gates:

Basis randomization: Hadamard (H) gates place all qubits
into superposition states.

Phase randomization: Parameterized RX(θ) rotations with
angles θ sampled uniformly from [-π, π] introduce qubit-
specific phase shifts.

Entanglement creation: CNOT gates entangle adjacent qubit
pairs (e.g., qubit 0→1, 2→3), generating artificial correlations.

After the initial state encoding , we apply:

Uobf =

(
n−1∏
i=0

HiRX(θi)

)⌊n/2⌋∏
j=0

CNOT2j,2j+1


2) Isolation Barrier: A hardware-enforced barrier pre-

vents quantum compilers from optimizing or rearranging gates
across the defense structure, preserving the intentional obfus-
cation pattern. The barrier is not observable at the cloud end
during execution thereby eliminating any adversarial clue.

3) Inversion Phase: Before the PQC circuit, we systemat-
ically undo the obfuscation:

Entanglement removal: Apply inverse CNOT gates in re-
verse order (e.g., qubit 2→3 first, then 0→1).

TABLE II
AVERAGE CIRCUIT DEPTH (ORIGINAL VS OBFUSCATED)

Encoding Type Original Obfuscated ∆ Abs ∆↑%
Amplitude 95.2 101.1 +5.9 6.2%
Basis 67.6 74.1 +6.5 9.7%

Rx 70.2 76.1 +5.9 8.4%
Angle Ry 69.2 76.1 +6.9 10%

Rz 67.7 74.1 +6.4 9.5%

Phase cancellation: Implement RX(θ) rotations to negate
the initial random phases.

Basis restoration: Reapply H gates to return qubits to their
original basis.

This architecture preserves encoding anonymity while en-
suring correct functionality, as the parameterized quantum
circuit (PQC) operates directly on the originally encoded
quantum state |ψenc⟩.

V. RESULTS AND EVALUATION

Due to the long queue times and limited availability of real
quantum devices, we used Qiskit’s fake provider module that
mimics IBM’s system and includes real hardware-calibrated
data. Training was performed on an Intel Core-i7-12700H
CPU with 40GB of RAM. We evaluated the efficacy of
the proposed encoding detection attack through three critical
dimensions: classification accuracy across QNN architectures
with varying qubit counts and different PQCs, feature scala-
bility, and training convergence.

A. Training Convergence and Attack Reliability

The training dynamics Fig.2 confirms the reliability of
the classifier under the design feature space. The validation
accuracy reaches 80% in epoch 40 and stabilizes at 90%
training accuracy by epoch 100. Concurrently, training loss
decreases monotonically from 1.2 to 0.2, indicating stable
optimization without overfitting.

Table I details the attack’s precision, recall, and F1-scores
for distinguishing encoding schemes in a 3-qubit system. The
amplitude encoding achieves perfect classification (F1=1.00),
attributed to its unique transpilation artifacts. In contrast, basis
encoding shows reduced recall (0.81) and F1-score (0.87),
likely due to its reliance on X and SX gates—patterns that
may overlap with angle-encoded circuits post-transpilation.
The adversary can predict the encoding scheme used by the
user with a ≈ 95% success rate. These results validate the fea-
ture engineering pipeline’s ability to isolate encoding-specific
signatures, even for structurally similar angle variants. The
adversary can identify the type of encoding used and, in the
case of angle encoding, determine the specific rotation gate
employed for data encoding.

B. Feature Scalability and Attack Robustness

The linear relationship between feature count and the num-
ber of qubits (Equation.1) demonstrates the attack’s adaptabil-
ity to circuit complexity. At the 3-qubit baseline, 33 features
capture structural patterns, rotation statistics, and entangle-
ment properties. Expanding to 14 qubits increases the feature



space to 55, improving the ability to distinguish encoding-
specific transpilation artifacts (e.g., RZ-SX sequences in basis
encoding). While extrapolation to 100 qubits (227 features)
raises classical computational costs, the linear growth ensures
practical viability for near-term attacks targeting ≤ 14−qubit
QNNs—consistent with current QML benchmarks.

C. Encoding Classification Accuracy vs. Qubit Count

The adversary can accurately classify encoding types even
as the number of qubits increases (Fig.3). For a 3-qubit
system, the attack achieves 94% accuracy, demonstrating its
effectiveness at small scales. As qubit count scales to 14,
test accuracy improves from 90% to 95%, indicating that
the model effectively captures and differentiates encoding-
specific transpilation artifacts. Furthermore, the model not only
identifies the encoding type but also determines the specific ro-
tation gates used in angle encoding, even as circuit complexity
grows. The transpilation artifacts and circuit structures remain
sufficiently distinct at higher qubit counts, allowing the model
to generalize effectively across varying circuit sizes.

D. Defense Efficacy and Overhead

To assess the effectiveness of the proposed defense, we
generated a test dataset incorporating the defense strategy
and evaluated the trained classifier’s accuracy. The results
indicate a significant reduction in adversarial encoding de-
tection accuracy, dropping from 95% to an average of 42%
across all encoding types (Fig.3). However, this obfuscation
introduces an average depth increase of ≈8.5% compared to
baseline transpiled circuits. Table II presents a comparison
of the average circuit depth across 800 instances for each
encoding type, considering a 5-layers, of a low-depth PQC.
Notably, for deeper QNNs and multi-layer PQC architectures,
the relative % increase in depth is expected to be negligible.

VI. CONCLUSION

This work identifies a critical vulnerability of QNN’s white-
box access to adversaries in untrusted quantum cloud by
demonstrating that quantum encoding schemes can be reliably
detected with ≈95% accuracy. This is due to transpilation
artifacts which can aid in subsequent state preparation circuit
(an IP) theft. To mitigate this risk, we propose to strategically
insert transient obfuscation layers—randomized rotations and
entanglement—to obscure encoding patterns. This approach
reduces adversarial detection accuracy to near-random levels
(≈42%) while introducing a minimal circuit depth overhead
of ≈8.5% for a 5-layer QNN design.
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