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Abstract—Inspired by the success of Self-Supervised Learning
(SSL) in learning visual representations from unlabeled data, a
few recent works have studied SSL in the context of Continual
Learning (CL), where multiple tasks are learned sequentially,
giving rise to a new paradigm, namely Self-Supervised Continual
Learning (SSCL). It has been shown that the SSCL outperforms
Supervised Continual Learning (SCL) as the learned representa-
tions are more informative and robust to catastrophic forgetting.
However, building upon the training process of SSL, prior SSCL
studies involve training all the parameters for each task, resulting
to prohibitively high training cost. In this work, we first analyze
the training time and memory consumption and reveals that the
backward gradient calculation is the bottleneck. Moreover, by
investigating the task correlations in SSCL, we further discover an
interesting phenomenon that, with the SSL-learned background
model, the intermediate features are highly correlated between
tasks. Based on these new finding, we propose a new SSCL
method with layer-wise freezing which progressively freezes partial
layers with the highest correlation ratios for each task to improve
training computation efficiency and memory efficiency. Extensive
experiments across multiple datasets are performed, where our
proposed method shows superior performance against the SoTA
SSCL methods under various SSL frameworks. For example,
compared to LUMP, our method achieves 1.18x, 1.15x, and 1.2x
GPU training time reduction, 1.65x, 1.61x, and 1.6x memory
reduction, 1.46x, 1.44x, and 1.46x backward FLOPs reduction,
and 1.31%/1.98%/1.21% forgetting reduction without accuracy
degradation on three datasets, respectively.

Index Terms—Continual Learning, Self-supervised Learning,
Layer Freezing

I. INTRODUCTION

Self-Supervised Learning (SSL) has achieved great success
for unsupervised visual representation learning, which aims to
learn representation without the need for human annotations.
Recent studies (e.g., [1]–[4]) have shown that SSL can achieve
comparable or even better performance than the supervised
learning counterpart, by utilizing different augmentation views
from the same images to generate and optimize contrastiveness.
However, SSL still suffers from two major challenges: (C1)
SSL typically assumes that all training data is available during
the training process and learns offline with large amounts of
data and resources. In order to integrate new knowledge into the
model, the current SSL methods need to train repeatedly on the
entire dataset. This may hinder their applications in some real-
world scenarios, where new unlabeled data is made available
progressively over time and old data becomes unavailable. Also,
the learners must be able to cope with non-stationary data in a
continuous manner when they are exposed to tasks with varying
distributions of data. (C2) Compared to supervised learning,
obtaining the trained model with the same performance requires

much larger training cost in various settings (e.g., heavy model
size, larger batch-size, longer training epochs, etc,.).

Fortunately, Continual Learning (CL) [5] provides a promis-
ing solution to address the challenge C1. Notably, CL aims to
incrementally update a model over a sequence of tasks, per-
forming knowledge transfer from the old tasks to the new ones
without catastrophic forgetting. A large body of works has been
proposed (e.g., [6]–[15]) for the Supervised Continual Learning
(SCL) paradigm. Most recently, a few works [16]–[20] have
emerged to study CL for the self-supervised learning paradigm,
named as Self-Supervised Continual Learning (SSCL), which
demonstrates that self-supervised visual representations are
more robust to catastrophic forgetting compared to supervised
learning. Specifically, CaSSLe [16] and PFR [17] propose a
similar method that designs a temporal projection module to
ensure that the newly learned feature space preserves the infor-
mation of the previous one. UCL [18] adopts the Mixup [21]
technique to interpolate data between the current task and
previous tasks’ instances to alleviate catastrophic forgetting
of the learned representations. However, these SSCL works
directly combine the existing SSL frameworks with super-
vised continual learning techniques (e.g, knowledge distillation,
mixup, memory replay, etc,.), while overlooking the substantial
training costs inherited from SSL. Compared to Supervised
Learning, the training cost of SSL models is notoriously high,
and this issue is further exacerbated in SSCL where new tasks
arrive continuously. How to improve the training efficiency of
SSCL becomes a critical question that needs to be solved, in
order to facilitate the development and application of SSCL
methods in practice.

In this work, we seek to tackle these problems to reduce
training costs while maintaining accuracy for SSCL. Towards
this end, we first analyze the training time and memory con-
sumption, revealing two key insights: 1) gradient calculations
during the backward pass, rather than the forward pass, account
for 70% of the total training time, and 2) intermediate activation
storage, not model parameter, consumes 69% of the total
memory. This motivates us to explore layer freezing, which has
proven to be an effective solution for simultaneously reducing
gradient calculation and activation storage. Moreover, by first
analyzing the task correlations based on gradient projection in
SSCL, we find that the intermediate representations (i.e. activa-
tion) learned by self-supervised learning are highly correlated
and varied among tasks in comparison to SCL. Inspired by this
new finding, we propose a new SSCL method with progressive
task-correlated layer freezing (PTLF) during training for
each task to reduce training time and memory cost. Meanwhile,



due to the fact that freezing part of layers naturally preserves
the knowledge of prior tasks when training on current task,
PTLP is able to remain the accuracy by persisting the issue
of catastrophic forgetting. Specifically, we first define the task
correlation ratio according to the gradient projection norm to
formally characterize the correlation between the current task
and prior tasks. Then, the top-ranked layers with higher task
correlation ratios among tasks are progressively frozen during
the self-supervised continual learning process for each task. It’s
also important to note that PTLF is a general method that can
be applied on various SSCL methods.

In the experiments, we validate the proposed method against
the state-of-the-art SSCL methods on mutiple benchmarks,
including Split CIFAR-10, Split CIFAR-100, Split TinyIma-
geNet and ImageNet-100. The experimental results on various
SSL frameworks have shown that our method demonstrates
superior performance of training efficiency and forgetting over
the baseline methods, with comparable or even better accuracy
on both settings of class- and task-incremental learning. For
example, in comparison to LUMP [18], by using SimSiam [2]
SSL framework, our method achieves 1.18×, 1.15×, and 1.2×
GPU training time reduction, 1.65×, 1.61×, and 1.6× memory
reduction, 1.46×, 1.44×, and 1.46× backward FLOPs re-
duction, and 1.31%/1.98%/1.21% forgetting reduction without
accuracy degradation on three datasets, respectively.

II. RELATED WORK

A. Self-Supervised learning

Self-supervised learning aims to learn visual representation
without data labeling cost. Recent advances [1]–[4], [22]
show that self-supervised learning can achieve similar or even
better performance than supervised representation learning.
A common strategy of these methods is to learn represen-
tations that are invariant under different data augmentations
by maximizing their similarity with contrastive loss optimiza-
tion. However, these approaches require large-sized batches
and negative samples. SimSiam [2] addresses this issue by
utilizing the stop-gradient technique to prevent the collapsing
of Siamese networks. In addition, given the distorted versions
of an instance, BarlowTwin [4] minimizes the redundancy
between their embedding vector components while conserving
the maximum information. Since SimSiam and BarlowTwim
have no requirements for large batch size and negative samples,
in this work, we adopt these two works as base learning
methods for self-supervised continual learning.

B. Continual Learning

Plentiful continual learning methods have been developed in
supervised learning and can be generally divided into three cat-
egories: 1) Regularization-based methods (e.g., [5], [23], [24])
preserve the knowledge of old tasks by adding an additional
regularization term in the loss function, in order to constrain the
weight update when learning the new task. 2) Structure-based
methods (e.g., [8], [25]–[27]) adapt different model parameters
or architectures with a sequence of tasks. 3) Memory-based
methods can be further divided into memory-replay meth-
ods and orthogonal-projection based methods. Memory-replay

methods (e.g., [28]–[30]) store and replay the old tasks data
when learning the new task, while orthogonal-projection based
methods (e.g., [11]–[15]) update the model for each new task
in the orthogonal direction to the subspace spanned by inputs
of old tasks.

More recently, a few works [16]–[19], [31] have emerged
to tackle the problem of self-supervised continual learning.
They show that self-supervised continual learning can mitigate
catastrophic forgetting and learn more general representations
compared to supervised continual learning. Specifically, [31]
learned task-specific representations on shared parameters.
However, it is restricted to simple low-resolution tasks and
not scalable to standard CL benchmark datasets. In addition,
CaSSLe [16] and PFR [17] propose a similar method that
designs a temporal projection module to ensure that the newly
learned feature space preserves the information of the previous
one. LUMP [18] adapts the Mixup [21] technique to interpolate
data between the current task and previous tasks’ instances
to alleviate catastrophic forgetting for unsupervised representa-
tions. Kaizen [20] proposes to leverage knowledge distillation
to mitigate catastrophic forgetting, while a classifier is contin-
ually trained with supervision. However, these works directly
combine the existing self-supervised with continual learning
techniques (e.g, knowledge distillation, mixup, memory replay,
etc,.) that still suffer from large training costs.

C. Layer Freezing

There existed several works on accelerating the training of
deep neural networks for one single task by using layer freezing
techniques [32]–[36]. These works are mainly motivated by
the fact that front layers mainly extract general features of the
raw data (e.g., the shape of objects) and are easier to well-
trained, while deeper layers are more task-specific and capture
complicated features output from front layers. Specifically, Liu
et al. [32] propose to automatically freeze layers during training
according to the parameter gradients. Wang et al. [34] adopt
knowledge distillation [35] to guide the layer freezing schedule.
[36] apply layer freezing on sparse training. However, these
works primarily focus on training one single task. Different
from all these related works, we study the layer freezing in
SSCL with the consideration of task correlations.

III. METHOD

A. Problem Setup

In Supervised Continual Learning (SCL), a model contin-
uously learns from a sequential data stream in which new
tasks (namely, classification tasks with new classes) are added
over time. More formally, we consider a sequence of tasks
{1, 2, ..., T} where the task at time t comes with training data
Dt = {xt,i,yt,i}Nt

i=1. Note that each task t can contain a
sequence of classes. We denote f(·) as the operation of a feature
extractor and g(·) as a classifier model. The main objective is
to optimize the parameter w of both the feature extractor and
the classifier:

minwf ,wh

T∑
t=1

Nt∑
i=1

Lt(g(f(xt,i)),yt,i) (1)



Fig. 1: The overview of our proposed method which progressively freezes partial layers during the whole training process for
each task.
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Fig. 2: Training time and memory analysis by using ResNet18
as backbone model and SimSam as self-supervised learning
method for SSCL under 256 batch size.

where Lt(·) is cross entropy loss function in general.
In contrast, self-supervised continual learning does not re-

quire labels during training. We denote h(·) as objection layer,
the objective is to learn a general representation that is invariant
to augmentations on all tasks, which can be formulated as:

minwf

T∑
t=1

Nt∑
i=1

Lt(h(f(x
1
t,i)), f(x

2
t,i)) (2)

where x1
t,i and x2

t,i are augmented images generated from xt,i.
The choices of the feature extractor and loss function depend
on the self-supervised learning method, such as SimSiam
and BarlowTwin. After the feature extractor is learned on all
tasks, following [18], we use K-nearest neighbor (KNN) clas-
sifier [37] or linear classification to evaluate the performance
of the learned representation. In this work, we investigate self-
supervised continual learning on the settings of both task- and
class- incremental learning [38].

B. SSCL Suffers From High Training Cost
Compared to Supervised Continual learning, Self-Supervised

Continual Learning suffers from much higher training cost.
The main reason is that as shown in Eq. 2, SSCL has a
Siamese architecture where two augments of the same images
will pass through the same feature extractor f(·) (i.e., ResNet-
18), respectively. Moreover, projection layer h(·) in SSCL has
much larger parameter size than classifier h(·) in SCL. To
understand the training cost of SSCL, we quantitatively evaluate
the training cost by measuring the actual training time and
calculate memory consumption1 in one training step for both
SCL and SSCL.
Analysis on training time. Fig. 2(a) presents the training time
analysis for SCL and SSCL respectively. In general, the training
process can be divided into two consecutive steps: the forward
pass and the backward pass. The backward pass can further be
broken down into two phases: gradient calculation and weight
update. As shown in Fig. 2(a), it’s clear to see that 1) SSCL
suffers from substantial training cost that is ∼ 2× compared to
SCL. 2) For SSCL, the gradient calculation is the bottleneck
accounting for approximately 70% of the total training time.
3) Weight update is computationally lightweight and takes the
same amount of time in both SSCL and SCL.
Analysis on training memory. Fig. 2(b) presents the memory
usage during training. The whole training memory usage can be
categorized into: model parameter size, intermediate activation
storage of each layer, optimizer states which store the parameter
gradients and related variables, and replay data that stores a
number of data from prior tasks for continual learning. First
and foremost, we observe that intermediate activation storage
is the primary bottleneck, consuming approximately 70% of
the total memory usage. Additionally, optimizer states require
twice the memory of model parameters due to the momentum
schedule in modern optimizers (e.g., SGD), which doubles the
gradient storage. In contrast, replay data occupies a minimal
amount of memory compared to other types.

In summary, gradient calculation during the backward pass
and intermediate activation storage are the main bottlenecks for

1We calculate the memory cost due to lack of well-supported tool to measure
fine-grained memory usage in current machine learning framework.
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Fig. 3: Layer-wise correlation ratio between two tasks on Split CIFAR-10 using ResNet18 for SSCL and SCL respectively.

both training time and memory usage. Meanwhile, layer freez-
ing—by freezing unimportant layers during training—proves
to be an effective technique to address these issues, as frozen
layers do not require gradient calculations or storage of corre-
sponding activations for the backward pass. These observations
motivated us to further explore how to perform layer freezing
in self-supervised continual learning.

C. Proposed Method

In this work, we propose progressive task-correlated layer
freezing (PTLF) for self-supervised continual learning to reduce
training time and memory consumption while maintaining
accuracy. Fig. 1 presents the overview of the proposed method.
Specifically, for training each task in continual learning, fol-
lowing the standard practice [16]–[18], [31], we employ the
memory replay method [10] to store a uniform sample of data
from each previous task using a fixed buffer size. The replayed
data are then combined with the current task’s data during
training to optimize the self-supervised loss as shown in Eq. 2.
More importantly, the proposed method progressively freezes
portions of important layers from prior tasks based on their task
correlations. The detailed method will be illustrated below.

1) Task correlation indicates the layers to be frozen: As
revealed by prior works [16]–[18], [31], the learned represen-
tations of SSCL are more general and robust to catastrophic
forgetting than the representations of SCL. We conjecture the
reason behind is the learned intermediate features for each
layer between the current task and prior tasks are highly
correlated with each other. Accordingly, if the new task t has
strong similarity with old tasks in some layers, it is possible
that not updating these layers will not significantly affect the
learning performance of this new task. Thus inspired, we raise
the question: Can we leverage the generality of the learned
representations from SSL and freeze the highly correlated layers
during training for each task to improve the training efficiency?

To answer this question, motivated by prior gradient
orthogonal-projection based methods [14], [15] on SCL, we
first investigate the correlation of tasks according to gradient
projection. Specifically, to formally characterize the correlation
between the current task and prior tasks, we define the task
correlation ratio in layer-wise as:

plt =
∥ProjSl

t
(∇Lt(w

l
t−1))∥2

∥∇Lt(wl
t−1))∥2

(3)

where ProjSl
t

denotes the projection on the input subspace Sl
t

of prior tasks (1, 2, ..., t− 1) on lth layer, and wl
t−1 represents

the lth layer weight in the model before learning task t. Here

ProjS(A) = AB(B)′ for some matrix A and B is the bases
for S. Accordingly, for each task t, we can generate a set
of task correlation ratios Pt = [p1t , p

2
t , ..., p

S
t ] where S is the

total number of layers. Due to the fact that the gradient lies
in the span of the input [13], if the task correlation ratio
plt ∈ (0, 1) has a large value, it implies that the current task
t and prior tasks may have sufficient common bases in lth

layer between their input subspaces and hence are strongly
correlated. To quantitatively evaluate the task correlation on
SSCL, we conduct the experiments on three settings (i.e., Split
CIFAR-10, Split CIFAR-100, Split TinyImageNet) by using
SimSiam for continual learning. As shown in 3, we observe
that:

Observations: 1) the variance of the task correlation ratio
in SSCL is smaller than the counterparts in SCL; 2) the
correlation ratios of SSCL are larger than the counterparts
in SCL for most layers; 3) the correlation ratios of SCL
consistently follow an ascending order, while the counterparts
in SSCL are more varied that are usually higher for top and
middle layers.

The first two observations help to further explain that the
learned representations of SSCL are more general than SCL.
Moreover, the third observation indicates that following as-
cending order to freeze layer in supervised learning is a good
choice [32], [36], [39] since the correlation ratios of the top
layers are always larger than the later ones. However, for
the SSCL, layer freezing needs to consider task correlations
between tasks. In the experiments, we also evaluate that task-
correlated layer freezing could show better accuracy than
conventional layer freezing in ascending order in the Section V.

2) Progressive layer freezing via the defined task correla-
tion: First of all, we calculate the task correlation ratios Pt

in one-shot before training each task. As shown in Eq. 3, the
input subspace of prior tasks is needed for this calculation. To
obtain it, we use replayed data from prior tasks to perform a
forward pass on the current model and calculate the bases of
the subspace by applying Singular Value Decomposition (SVD)
to the intermediate activations in each layer.

Based on the obtained task-correlation ratios, we develop
progressive task-correlated freezing in SSCL to progressively
increase the number of frozen layers with the highest correla-
tion ratios during training for each task. In practice, we define
the initial freeze ratio as ri and final freeze ratio as rf , which
denote the ratio of the number of frozen layers to the number
of layers in the neural network. The total number of training
epochs is N and the current training epoch is n. To schedule
the freeze ratio during training for each task, we consider
two options to progressively increase the freeze ratio: linear



TABLE I: Accuracy and forgetting of the learned representations on Split CIFAR-10, Split CIFAR-100 and Split Tiny-ImageNet
on ResNet-18 architecture with KNN classifier. All the values are measured by computing mean and standard deviation across
three trials. Note that, we use the layer freezing ratio as 0.4 by default for all our results.

Method SPLIT CIFAR-10 SPLIT CIFAR-100 SPLIT TINY-IMAGENET

Accuracy Forgetting Time Memory FLOPs Accuracy Forgetting Time Memory FLOPs Accuracy Forgetting Time Memory FLOPs
(%) (%) (ms) (MB) (e11) (%) (%) (ms)) (MB) (e11) (%) (%) (ms) (MB) (e11)

Si
m

si
am

Finetune 90.11 5.43 - - - 75.42 10.19 - - - 71.07 9.48 - - -

PNN [6] 90.93 - 46 819 8.54 66.58 - 47 819 8.54 62.15 - 100 2628 34.1
SI [7] 92.75 1.81 46 689 8.54 80.08 5.54 47 689 8.54 72.34 8.26 101 2498 34.1

DER [10] 91.22 4.63 47 689 8.54 77.27 9.31 47 689 8.54 71.90 8.36 101 2400 34.1

LUMP [18] 91.00 2.92 45 689 8.54 82.30 4.71 45 689 8.54 76.66 3.54 102 2498 34.1
LUMP-Ours 91.03 1.61 38 417 5.81 82.24 2.73 39 422 5.93 76.68 2.33 82 1506 23.2

Multitask 95.76 - 1x 1x 1x 86.31 - 1x 1x 1x 82.89 - 1x 1x 1x

B
ar

lo
w

Tw
in

Finetune 87.72 4.08 1x 1x 1x 71.97 9.45 1x 1x 1x 66.28 8.89 1x 1x 1x

PNN [6] 87.52 - 148 819 8.54 57.93 - 148 681 8.54 48.70 - 272 2510 34.1
SI [7] 90.21 2.03 153 681 8.54 75.04 7.43 152 681 8.54 56.96 17.04 278 2490 34.1

DER [10] 88.67 2.41 142 681 8.54 73.48 7.98 151 681 8.54 68.56 7.87 256 2490 34.1

LUMP [18] 89.72 1.13 149 681 8.54 80.24 3.53 146 681 8.54 72.17 2.43 274 2490 34.1
LUMP-Ours 89.73 0.92 123 439 5.90 80.54 2.24 116 412 5.68 73.56 1.74 230 1606 22.7

Multitask 95.48 - - - - 87.16 - - - - 82.42 - - - -

scheduling and cosine annealing. The experimental results show
that both scheduling methods achieve same performance, and
we adopt cosine annealing by default. Following that, once
getting the freeze ratio for the current epoch, we adopt the
following strategies to progressively and accumulately freeze
the layers: 1) the layers with the highest task-correlation ratio
under the current freeze ratio rn will be frozen; 2) the frozen
layers of prior epochs will be unchanged, and we will gradually
increase the number of frozen layers according to the freeze
ratio difference (rn − rn−1). This can be achieved by using
a TopK function to select the layers to be frozen according
to the layer-wise task correlation Importantly, one practical
reason that we choose layer-wise freezing is that it could enable
actual training speedup in GPU by using general deep learning
frameworks (e.g, Tensorflow, Pytorch). In our experiments, we
set the initial and final freeze ratios as 0 and 0.4 for all tasks
by default.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Baseline. We compare with multiple self-supervised con-
tinual learning baselines across different categories of con-
tinual learning methods on CIFAR-10, CIFAR-100 and Tiny-
ImageNet dataset, respectively. As a general method to im-
prove memory efficiency for SSCL, we mainly adopt the
proposed PTFL on prior SOTA SSCL works CaSSLe [17] and
LUMP [18] on class incremental learning and task incremental
learning, respectively. In addition, following [18], we also
report several self-supervised variants of SCL methods. Specif-
ically, FINETUNE is a vanilla supervised learning method
trained on a sequence of tasks without regularization or episodic
memory and MULTITASK optimizes the model on complete
data. SI [7] is a regularization-based CL method, PNN [6] is a
architecture-based method, and DER [10] is a memory replay
method which adapts knowledge distillation by memory replay
to match the network logits sampled through the optimization
trajectory during continual learning.

Metrics. Following [18], two metrics are used to evaluate
the performance: Accuracy, the average final accuracy over

all tasks, and Forgetting, which measures the forgetting of
each task between its maximum accuracy and accuracy at the
completion of training. Furthermore, we utilize three metrics to
measure training efficiency: Training time, we report the train-
ing time ratio compared to LUMP baseline which is measured
on NVIDIA RTX A6000 GPU; memory, which includes model
parameter size, training activation storage, and memory replay
buffer size; Flops, which calculate the number of computational
operations during backward.

B. Main Results

1) Task-incremental learning: As shown in Table I, we
evaluate the performance of various SSCL methods, by using
SimSiam [1] and BarlowTwin [4] SSL frameworks on Split
CIFAR-10, Split CIFAR-100 and Split Tiny-ImageNet, respec-
tively. In all experiments, we set the initial and final freeze
ratios as 0 and 0.4 for all tasks by default. For SimSiam frame-
work, our method achieves 1.18×, 1.15×, and 1.2× training
time speedup, 1.65×, 1.61×, and 1.6× memory reduction, and
1.46×, 1.44×, and 1.46× backward FLOPs reduction on three
datasets respectively. Similarly, for the BarlowTwin framework,
our method achieves 1.21×, 1.23×, and 1.19× training time
speedup, 1.55×, 1.67×, and 1.55× memory reduction, and
1.44×, 1.50×, and 1.50× backward FLOPs reduction on three
datasets respectively. Importantly, our method clearly mitigates
the forgetting issue in comparison to all prior methods. For ex-
ample, compared to LUMP on Split CIFAR-100 and Split Tiny-
ImageNet for Simsiam, we reduce the forgetting by 1.31%,
1.98% and 1.21% respectively with similar accuracy.

2) Class-incremental learning: Moreover, we adopt the pro-
posed PTLF on CaSSLe on ImageNet-100 dataset for class
incremental learning by using two backbone SSL frameworks,
BarlowTwin and MoCoV2. As shown in Table II, similar results
can be found that the proposed method shows clear gain to
improve training efficiency and maintain accuracy by mitigating
catastrophic forgetting.

3) The setting of 5-dataset: To further evaluate the effec-
tiveness of the proposed method, we conduct the experiments
on the more challenging setting of 5 datasets as shown in
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Fig. 4: The final selection of updated layer for each task where the freezing ratio is 0.4. Note that, each blue point means the
index of the frozen layer. For Split CIFAR-100 20 tasks setup, we show the first five tasks for simplification.

TABLE II: Accuracy, forgetting, training time, and training
memory cost on ImageNet-100 with linear evaluation.

Setting ImageNet-100
Accuracy Forgeting Time Memory FLOPs

(%) (%) (ms) (MB) (e11)

BarlowTwin CaSSLe 68.2 1.3 630 9857 106
CaSSLe-Ours 68.5 0.7 523 5271 75.5

MoCoV2 CaSSLe 68.0 2.2 729 11025 150
CaSSLe-Ours 67.9 1.4 616 7232 82.5

TABLE III: Accuracy and forgetting on the setting of 5-dataset.
CIFAR-100 CIFAR10 MNIST FMNIST SVHN Avg Acc Forgetting

LUMP 56.43 74.12 85.36 83.48 80.73 76.02 11.20
LUMP-Ours 56.43 74.01 85.33 83.50 80.74 76.0 6.82

the Table III. Compared to LUMP, we achieve the same
accuracy while reducing forgetting. Notably, we find that the
indices of frozen layers are varied for different tasks compared
to the setting of in-class splits (e.g., Split CIFAR-10). This
observation demonstrates that our method can automatically
freeze partial layers based on task correlations that cannot be
achieved by manual layer selection.

4) The phenomenon of maintaining accuracy by mitigating
catastrophic forgetting: In all experiments, it’s interesting to
find that the proposed PTLF can persist the final average
accuracy while showing clear forgetting reduction compared
to baseline methods like LUMP and CaSSLe. This observation
suggests that PTLF might result in lower peak accuracy during
training for certain tasks. However, it effectively retains crucial
knowledge for each task. It’s important to note that achieving
higher peak accuracy for individual tasks does not necessarily
equate to achieving a higher final average accuracy. In the
context of continual learning, it is crucial to holistically assess
both accuracy and forgetting.

TABLE IV: The ablation study on the proposed method in
comparison to layer freezing in ascending layer index (i.e.,
“Bottom Layer”) order by using BarlowTwin as backbone.

Setting Split CIFAR-10 Split CIFAR-100
Forgetting Accuracy Forgetting Accuracy

Bottom Layers 0.96 89.24 2.57 78.87
Ours 0.92 90.03 2.24 80.54

V. ABLATION STUDY AND ANAYSIS

a) Task-correlated layer freezing VS ascending order
layer freezing: To evaluate the effectiveness of the proposed
progressive layer freezing via task correlation, we compare it
to ascending order layer freezing which is commonly used in
supervised learning settings to improve the training efficiency
for a single task. Specifically, for a fair comparison, we also

adopt the same cosine annealing to progressively freeze layers
under the same freezing ratio (i.e., 0.4). As shown in the
Table IV, our method can consistently achieve better accuracy
with similar forgetting compared to layer freezing in ascending
order. The results demonstrate that the task correlation between
tasks needs to be considered in SSCL.

b) The effectiveness of the layer freezing ratio: To under-
stand the impact of the freezing ratio, we evaluate the learning
performance for four different values of p (i.e., 0.7, 0.6, 0.5,
0.4) on SPLIT CIFAR-10 dataset by using BarlowTwin method
as shown in Table V. It can be seen that with the freezing ratio
increasing, the learning performance in terms of both accuracy
and forgetting gradually degrades, but to a slight extent. As
a benefit, the computational costs in terms of both training
time and memory significantly decrease. It makes sense that by
fixing more layers, it has a certain degree of negative effect on
learning each new task, meanwhile, it indicates less forgetting.
TABLE V: The ablation study on layer-wise freezing ratios.

Freeze ratio Accuracy Forgetting Time Memory

0.4 89.73 0.86 123 439
0.5 89.01 0.75 118 320
0.6 88.40 0.66 110 249
0.7 87.62 0.60 104 209

c) Self-supervised continual learning is robust to layer
freezing decision: We analyze the layer freezing decision by
using the freezing ratio of 0.4 and 0.5 for each task on Split
CIFAR-10 and Split CIFAR-100 respectively. As shown in
Fig 4, there are mainly two observations: 1) for inter-tasks, the
indexes of layer freezing decisions are highly similar, which
means that the selected frozen layers at the first task will not
be updated across all the rest tasks. It further helps to show
that the learned representation by SSCL is general and robust;
2) for intra-task, it is interesting to see that and a large number
of front layers are updated while the first layer (e.g., index as
0) remain frozen during training. We conjecture the reason is
that the first layer learn the low-level general features.

VI. CONCLUSION

In this work, we first investigate the task correlation of
SSCL and find that intermediate features are highly correlated
between tasks. Based on this, we propose a progressive task-
correlated layer freezing method that freezes gradually partial
layers with the highest correlation ratios for each task. Ex-
tensive experiments across multiple datasets clearly show that
our method can significantly improve training computation and
memory efficiency meanwhile mitigating catastrophic forget-
ting, compared to the SoTA SSCL methods.
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