Efficient Self-Supervised Continual Learning with Progressive Task-correlated Layer Freezing

Li Yang1, Sen Lin2, Fan Zhang3, Junshan Zhang4, Deliang Fan5
1university of north carolina at charlotte, 2University of Houston, 3Johns Hopkins University, 4University of California, Davis, 5Arizona State University


Abstract

Inspired by the success of Self-Supervised Learning (SSL) in learning visual representations from unlabeled data, a few recent works have studied SSL in the context of Continual Learning (CL), where multiple tasks are learned sequentially, giving rise to a new paradigm, namely Self-Supervised Continual Learning (SSCL). It has been shown that the SSCL outperforms Supervised Continual Learning (SCL) as the learned representations are more informative and robust to catastrophic forgetting. However, building upon the training process of SSL, prior SSCL studies involve training all the parameters for each task, resulting to prohibitively high training cost. In this work, we first analyze the training time and memory consumption and reveals that the backward gradient calculation is the bottleneck. Moreover, by investigating the task correlations in SSCL, we further discover an interesting phenomenon that, with the SSL-learned background model, the intermediate features are highly correlated between tasks. Based on these new finding, we propose a new SSCL method with layer-wise freezing which progressively freezes partial layers with the highest correlation ratios for each task to improve training computation efficiency and memory efficiency. Extensive experiments across multiple datasets are performed, where our proposed method shows superior performance against the SoTA SSCL methods under various SSL frameworks. For example, compared to LUMP, our method achieves 1.18x, 1.15x, and 1.2x GPU training time reduction, 1.65x, 1.61x, and 1.6x memory reduction, 1.46x, 1.44x, and 1.46x backward FLOPs reduction, and 1.31%/1.98%/1.21% forgetting reduction without accuracy degradation on three datasets, respectively.