Weighted Vertex Cover Using Disjoint Set Data Structures for the Memory Reconfiguration
Problem

Abstract—We propose a minimum weighted vertex cover
method relying on modified disjoint data set structures and
Kruskal algorithm for purposes of the memory reconfiguration
problem. With column-muxing, the problem of redundancy
allocation and planning with spare columns and spare rows
must account for the column versus row redundancy block costs.
The proposed algorithm is comprehensive and computationally
efficient. It enables reducing the budget of repair by upto 70%
compared to an all row repair solution. It also highlights the
difference in redundancy planning requirements based on the
underlying column muxing strategy for fixed array size.

I. INTRODUCTION

Emory redundancy planning is key for design man-

ufacturability and yield. A large or small quota can
result in extra spare parts or yield loss. Planning around the
expected fail probability results in proper usage of resources.
The authors in [1], [2] proposed heuristics that determine
the number of rows and columns for proper yield. Targetting
fail rate within the repairable range, enables solving the NP
complete problem with average case polynomial time. The
authors, however, did not incorporate the cost for column
versus row redundancy. We propose a weighted vertex cover
approach that takes into consideration the unbalanced cost
between spare rows and columns for proper planning.

II. PROPOSED APPROACH

Figure 1 presents the Disjoint set data structure [3]. It relies
on merge and find functions to detect cycles for minimum
spanning tree algorithms such as Kruskal’s algorithm. Figure 2
presents a sketch of a 4x8 array with two faults. It assumes that
the column muxing is 4-to-1. This reduces to a 4x2 array: two
column blocks (cbl, and cb2) and 4 rows. A row comprises
eight bit cells, and a column block 16 bit cells. It is represented
by a graph of 4x2 vertices and two edges. Vertex cover (rl,
12) is the least costly cover. To find the cover, the array is
mapped to a bipartite graph. Given a bipartite graph G(V, E),
Kruskal’s algorithm [4], is an efficient algorithm for finding the
minimum spanning forests, that runs in O(|E|log|E|), where
|E| is the cardinality of E; E is the set of edges and V is the
set of vertices. A repairable nxn arrays has a fault probability
Dy = ¢/n where ¢ < 1, and the number of non-tree vertices is
log(n) [1]. Figure 3 presents the proposed flow. We rely on
Kruskal’s algorithm to find the forest; the edges are equally
weighted. We find for each tree a minimum weighted vertex
cover (Fig. 4) incorporating the verteices’ cost. We handle the
non-tree vertices heuristically. We study maxn arrays, where
m € {64,...,512}, n € {128,..,1024}; p; = 0.5/1/(mzn)
and column muxing scenarios {1—to—1,2—to—1,4—to—1}.
We analyze the benefit of adding column redundancy versus an
all row-redundancy solution to help with redundancy planning.
We note that the advantage (Fig. Sacd entries < 1) varies with
the column block cost vs row cost and muxing strategy.

REFERENCES

[1] W. Shi,and W. Fuchs. “Probabilistic analysis and algorithms for recon-
figuration of memory arrays.” IEEE TCAD (1992)

[2] — removed for blind review

[3] K. Taha, IEEE Transactions on Knowledge and Data Engineering, 2019

[4] Ayegba, Peace, et al. ”A comparative study of minimal spanning tree
algorithms.” IEEE ICMCECS, 2020.

N\ N\
1/2/3/4 5/6(7/8(9 1/2|3 4|(5/6/7 8|9
-1[-1/5 -1 -3|3|-1]9]-2 -1(-1|5|-1 3|1 -2

-4 5

(3] e ‘

V=
(2] P 2 Q.3
I
o 8 (4] g

Fig. 1. Disjoint set data structure helps detect cycles. Merging trees example.
A root is labeled by its size (times ’-1”). A node is labeled by its parent.

c4 c5 c6 c7 c8 cb1 cb2
000 0 0 0 rifl 0
00 1 00 210 1
00000» 1310 0
000 0 O 410 0

@@ o o

Fig. 2. Example array faults. An edge represents the fault.

1.Kruskal algorithm-based
approach- Minimum
Spanning Forest (MSF)

s

2. Dynamic Programming for

MWVC
3. Resolved as

remaining faulty rows
cover- vs exhaustive search

Proposed Flow

Build Tree List

For each tree:
Find Minimum Weighted
Vertex Cover (MWVC)

‘ Handle remaining Vertices

Fig. 3. Overall proposed flow.

Find Children Score (cost)

Score(Tg5;¢) with node

COStyoge + Z score(Topiia)

children

score(Tg,

1) Without node

+
score(Tepira)

children

If score(Tegyy) < Score(Tshyy)
Add Children
Else: Add self to cover

Fig. 4. Minimum weighted vertex cover (MWVC): dynamic programming
for self node (T's¢;¢) and children (Tp;14)-

Number of columns: n lColumn Block Cost
128 | 256 | 512 | 1024 Row Cost
64 | 053 | 034 0.25
€| 128 | 087 | 06 | 038 05
% [256 | 099 | 093 | 057 | 038 1
2 [sn 097 | 089 | 058 2
[
s (@) (b)
b
ji 128 | 256 | 512 | 1024 128 | 256 | 512 | 1024
[3 64 | 094 | 058 | 037 64 il 078 | 059 | 044
3| 128 [096 [09 [064 | 039 128 1 | 089 | 062
256 098 | 088 | 063 256 094 | 091
512 099 [089 512 094
(c) (d)
Fig. 5. Normalized redundancy budget cost based on proposed MWVC

(smaller better) for added column redundancy vs row only redundancy
planning. a) 1-to-1, ¢) 2-to-1, and d) 4-to-1 column muxing. b) cells per
column block to row block ratio. Budget planning function of array size,
and muxing; e.g., fixed array size 256x1024 adding column redundancy
incorporates 30% (53%) cost reduction when muxing is 2-to-1 (1-to-1) vs
4-to-1.

