Large Language Models (LLMs) have demonstrated promising capabilities in generating Verilog code from module specifications. To improve the quality of such generated Verilog codes, previous methods require either time-consuming manual inspection or generation of multiple Verilog codes, from which the one with the highest quality is selected with manually designed testbenches. To enhance the generation efficiency while maintaining the quality of the generated codes, we propose VRank, an automatic framework that generates Verilog codes with LLMs. In our framework, multiple code candidates are generated with LLMs by leveraging their probabilistic nature. Afterwards, we group Verilog code candidates into clusters based on identical outputs when tested against the same testbench, which is also generated by LLMs. Clusters are ranked based on the consistency they show on testbench. To determine the best candidate, Chain-of-Thought is further applied to select the best candidate from the top-ranked clusters. By systematically analyzing diverse outputs of generated codes, VRank reduces errors and enhances the overall quality of the generated Verilog code. Experimental results on the VerilogEval-Human benchmark demonstrate a significant 10.5% average increase in functional correctness (pass@1) across multiple LLMs, demonstrating VRank's effectiveness in improving the accuracy of automated hardware description language generation for complex design tasks.